Quadrature formulas based on the scaling function
Applications of Mathematics, Tome 50 (2005) no. 4, pp. 387-399.

Voir la notice de l'article dans Czech Digital Mathematics Library

The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties $M_2 = M_1^2$ and $M_0 = 1$. So, in this sense, its choice is optimal. Numerical examples are given.
DOI : 10.1007/s10492-005-0029-8
Classification : 41A55, 42C40, 65D30, 65D32, 65T60
Mots-clés : Daubechies wavelet; quadrature formula
@article{10_1007_s10492_005_0029_8,
     author = {Fin\v{e}k, V\'aclav},
     title = {Quadrature formulas based on the scaling function},
     journal = {Applications of Mathematics},
     pages = {387--399},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2005},
     doi = {10.1007/s10492-005-0029-8},
     mrnumber = {2151463},
     zbl = {1099.65147},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0029-8/}
}
TY  - JOUR
AU  - Finěk, Václav
TI  - Quadrature formulas based on the scaling function
JO  - Applications of Mathematics
PY  - 2005
SP  - 387
EP  - 399
VL  - 50
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0029-8/
DO  - 10.1007/s10492-005-0029-8
LA  - en
ID  - 10_1007_s10492_005_0029_8
ER  - 
%0 Journal Article
%A Finěk, Václav
%T Quadrature formulas based on the scaling function
%J Applications of Mathematics
%D 2005
%P 387-399
%V 50
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0029-8/
%R 10.1007/s10492-005-0029-8
%G en
%F 10_1007_s10492_005_0029_8
Finěk, Václav. Quadrature formulas based on the scaling function. Applications of Mathematics, Tome 50 (2005) no. 4, pp. 387-399. doi : 10.1007/s10492-005-0029-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0029-8/

Cité par Sources :