A notion of Orlicz spaces for vector valued functions
Applications of Mathematics, Tome 50 (2005) no. 4, pp. 355-386.
Voir la notice de l'article dans Czech Digital Mathematics Library
The notion of the Orlicz space is generalized to spaces of Banach-space valued functions. A well-known generalization is based on $N$-functions of a real variable. We consider a more general setting based on spaces generated by convex functions defined on a Banach space. We investigate structural properties of these spaces, such as the role of the delta-growth conditions, separability, the closure of $\mathcal L^{\infty }$, and representations of the dual space.
DOI :
10.1007/s10492-005-0028-9
Classification :
46B10, 46E30, 46E40
Mots-clés : vector valued function; Orlicz space; Luxemburg norm; delta-growth condition; duality
Mots-clés : vector valued function; Orlicz space; Luxemburg norm; delta-growth condition; duality
@article{10_1007_s10492_005_0028_9, author = {Schappacher, Gudrun}, title = {A notion of {Orlicz} spaces for vector valued functions}, journal = {Applications of Mathematics}, pages = {355--386}, publisher = {mathdoc}, volume = {50}, number = {4}, year = {2005}, doi = {10.1007/s10492-005-0028-9}, mrnumber = {2151462}, zbl = {1099.46021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0028-9/} }
TY - JOUR AU - Schappacher, Gudrun TI - A notion of Orlicz spaces for vector valued functions JO - Applications of Mathematics PY - 2005 SP - 355 EP - 386 VL - 50 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0028-9/ DO - 10.1007/s10492-005-0028-9 LA - en ID - 10_1007_s10492_005_0028_9 ER -
%0 Journal Article %A Schappacher, Gudrun %T A notion of Orlicz spaces for vector valued functions %J Applications of Mathematics %D 2005 %P 355-386 %V 50 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0028-9/ %R 10.1007/s10492-005-0028-9 %G en %F 10_1007_s10492_005_0028_9
Schappacher, Gudrun. A notion of Orlicz spaces for vector valued functions. Applications of Mathematics, Tome 50 (2005) no. 4, pp. 355-386. doi : 10.1007/s10492-005-0028-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0028-9/
Cité par Sources :