The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions
Applications of Mathematics, Tome 50 (2005) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We estimate the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for hierarchical bilinear finite element spaces and elliptic partial differential equations with coefficients corresponding to anisotropy (orthotropy). It is shown that there is a nontrivial universal estimate, which does not depend on anisotropy. Moreover, this estimate is sharp and the same as for hierarchical linear finite element spaces.
DOI : 10.1007/s10492-005-0020-4
Classification : 65N12, 65N22, 65N30, 74S05
Mots-clés : Cauchy-Bunyakowski-Schwarz inequality; multilevel preconditioning; elliptic partial differential equation
@article{10_1007_s10492_005_0020_4,
     author = {Pultarov\'a, Ivana},
     title = {The strengthened {C.B.S.} inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions},
     journal = {Applications of Mathematics},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     doi = {10.1007/s10492-005-0020-4},
     mrnumber = {2133733},
     zbl = {1099.65102},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/}
}
TY  - JOUR
AU  - Pultarová, Ivana
TI  - The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions
JO  - Applications of Mathematics
PY  - 2005
SP  - 323
EP  - 329
VL  - 50
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/
DO  - 10.1007/s10492-005-0020-4
LA  - en
ID  - 10_1007_s10492_005_0020_4
ER  - 
%0 Journal Article
%A Pultarová, Ivana
%T The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions
%J Applications of Mathematics
%D 2005
%P 323-329
%V 50
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/
%R 10.1007/s10492-005-0020-4
%G en
%F 10_1007_s10492_005_0020_4
Pultarová, Ivana. The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions. Applications of Mathematics, Tome 50 (2005) no. 3, pp. 323-329. doi : 10.1007/s10492-005-0020-4. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/

Cité par Sources :