Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_1007_s10492_005_0020_4, author = {Pultarov\'a, Ivana}, title = {The strengthened {C.B.S.} inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions}, journal = {Applications of Mathematics}, pages = {323--329}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2005}, doi = {10.1007/s10492-005-0020-4}, mrnumber = {2133733}, zbl = {1099.65102}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/} }
TY - JOUR AU - Pultarová, Ivana TI - The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions JO - Applications of Mathematics PY - 2005 SP - 323 EP - 329 VL - 50 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/ DO - 10.1007/s10492-005-0020-4 LA - en ID - 10_1007_s10492_005_0020_4 ER -
%0 Journal Article %A Pultarová, Ivana %T The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions %J Applications of Mathematics %D 2005 %P 323-329 %V 50 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/ %R 10.1007/s10492-005-0020-4 %G en %F 10_1007_s10492_005_0020_4
Pultarová, Ivana. The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions. Applications of Mathematics, Tome 50 (2005) no. 3, pp. 323-329. doi : 10.1007/s10492-005-0020-4. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0020-4/
Cité par Sources :