A generalization of the Holditch theorem for the planar homothetic motions
Applications of Mathematics, Tome 50 (2005) no. 2, pp. 87-91.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.
DOI : 10.1007/s10492-005-0005-3
Classification : 53A17
Mots-clés : Steiner formula; Holditch Theorem; homothetic motion
@article{10_1007_s10492_005_0005_3,
     author = {Y\"uce, Salim and Kuruo\u{g}lu, Nuri},
     title = {A generalization of the {Holditch} theorem for the planar homothetic motions},
     journal = {Applications of Mathematics},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     doi = {10.1007/s10492-005-0005-3},
     mrnumber = {2125151},
     zbl = {1099.53009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0005-3/}
}
TY  - JOUR
AU  - Yüce, Salim
AU  - Kuruoğlu, Nuri
TI  - A generalization of the Holditch theorem for the planar homothetic motions
JO  - Applications of Mathematics
PY  - 2005
SP  - 87
EP  - 91
VL  - 50
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0005-3/
DO  - 10.1007/s10492-005-0005-3
LA  - en
ID  - 10_1007_s10492_005_0005_3
ER  - 
%0 Journal Article
%A Yüce, Salim
%A Kuruoğlu, Nuri
%T A generalization of the Holditch theorem for the planar homothetic motions
%J Applications of Mathematics
%D 2005
%P 87-91
%V 50
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0005-3/
%R 10.1007/s10492-005-0005-3
%G en
%F 10_1007_s10492_005_0005_3
Yüce, Salim; Kuruoğlu, Nuri. A generalization of the Holditch theorem for the planar homothetic motions. Applications of Mathematics, Tome 50 (2005) no. 2, pp. 87-91. doi : 10.1007/s10492-005-0005-3. https://geodesic-test.mathdoc.fr/articles/10.1007/s10492-005-0005-3/

Cité par Sources :