Shifted symplectic structures
Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 271-328.

Voir la notice de l'article dans Numdam

This is the first of a series of papers about quantization in the context of derived algebraic geometry. In this first part, we introduce the notion of n-shifted symplectic structures (n-symplectic structures for short), a generalization of the notion of symplectic structures on smooth varieties and schemes, meaningful in the setting of derived Artin n-stacks (see Toën and Vezzosi in Mem. Am. Math. Soc. 193, 2008 and Toën in Proc. Symp. Pure Math. 80:435–487, 2009). We prove that classifying stacks of reductive groups, as well as the derived stack of perfect complexes, carry canonical 2-symplectic structures. Our main existence theorem states that for any derived Artin stack F equipped with an n-symplectic structure, the derived mapping stack Map(X,F) is equipped with a canonical (nd)-symplectic structure as soon a X satisfies a Calabi-Yau condition in dimension d. These two results imply the existence of many examples of derived moduli stacks equipped with n-symplectic structures, such as the derived moduli of perfect complexes on Calabi-Yau varieties, or the derived moduli stack of perfect complexes of local systems on a compact and oriented topological manifold. We explain how the known symplectic structures on smooth moduli spaces of simple objects (e.g. simple sheaves on Calabi-Yau surfaces, or simple representations of π 1 of compact Riemann surfaces) can be recovered from our results, and that they extend canonically as 0-symplectic structures outside of the smooth locus of simple objects. We also deduce new existence statements, such as the existence of a natural (−1)-symplectic structure (whose formal counterpart has been previously constructed in (Costello, arXiv:1111.4234, 2001) and (Costello and Gwilliam, 2011) on the derived mapping scheme Map(E,T X), for E an elliptic curve and T X is the total space of the cotangent bundle of a smooth scheme X. Canonical (−1)-symplectic structures are also shown to exist on Lagrangian intersections, on moduli of sheaves (or complexes of sheaves) on Calabi-Yau 3-folds, and on moduli of representations of π 1 of compact topological 3-manifolds. More generally, the moduli sheaves on higher dimensional varieties are shown to carry canonical shifted symplectic structures (with a shift depending on the dimension).

DOI : 10.1007/s10240-013-0054-1

Pantev, Tony 1 ; Toën, Bertrand 2 ; Vaquié, Michel 3 ; Vezzosi, Gabriele 4

1 Department of Mathematics, University of Pennsylvania Philadelphia, PA, 19104-6395 USA
2 Institut de Mathématiques et de Modélisations de Montpellier, Université de Montpellier2 Montpellier, 34095 France
3 Institut de Math. de Toulouse, Université Paul Sabatier Toulouse, 31062 France
4 Institut de Mathématiques de Jussieu, Université Paris Diderot Paris, 75005 France
@article{PMIHES_2013__117__271_0,
     author = {Pantev, Tony and To\"en, Bertrand and Vaqui\'e, Michel and Vezzosi, Gabriele},
     title = {Shifted symplectic structures},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {271--328},
     publisher = {Springer-Verlag},
     volume = {117},
     year = {2013},
     doi = {10.1007/s10240-013-0054-1},
     zbl = {1328.14027},
     mrnumber = {3090262},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-013-0054-1/}
}
TY  - JOUR
AU  - Pantev, Tony
AU  - Toën, Bertrand
AU  - Vaquié, Michel
AU  - Vezzosi, Gabriele
TI  - Shifted symplectic structures
JO  - Publications Mathématiques de l'IHÉS
PY  - 2013
SP  - 271
EP  - 328
VL  - 117
PB  - Springer-Verlag
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-013-0054-1/
DO  - 10.1007/s10240-013-0054-1
LA  - en
ID  - PMIHES_2013__117__271_0
ER  - 
%0 Journal Article
%A Pantev, Tony
%A Toën, Bertrand
%A Vaquié, Michel
%A Vezzosi, Gabriele
%T Shifted symplectic structures
%J Publications Mathématiques de l'IHÉS
%D 2013
%P 271-328
%V 117
%I Springer-Verlag
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-013-0054-1/
%R 10.1007/s10240-013-0054-1
%G en
%F PMIHES_2013__117__271_0
Pantev, Tony; Toën, Bertrand; Vaquié, Michel; Vezzosi, Gabriele. Shifted symplectic structures. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 271-328. doi : 10.1007/s10240-013-0054-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-013-0054-1/

Cité par Sources :