Constant mean curvature surfaces in warped product manifolds
Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 247-269.
Voir la notice de l'article dans Numdam
We consider surfaces with constant mean curvature in certain warped product manifolds. We show that any such surface is umbilic, provided that the warping factor satisfies certain structure conditions. This theorem can be viewed as a generalization of the classical Alexandrov theorem in Euclidean space. In particular, our results apply to the deSitter-Schwarzschild and Reissner-Nordstrom manifolds.
@article{PMIHES_2013__117__247_0, author = {Brendle, Simon}, title = {Constant mean curvature surfaces in warped product manifolds}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {247--269}, publisher = {Springer-Verlag}, volume = {117}, year = {2013}, doi = {10.1007/s10240-012-0047-5}, zbl = {1273.53052}, mrnumber = {3090261}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/} }
TY - JOUR AU - Brendle, Simon TI - Constant mean curvature surfaces in warped product manifolds JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 247 EP - 269 VL - 117 PB - Springer-Verlag UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/ DO - 10.1007/s10240-012-0047-5 LA - en ID - PMIHES_2013__117__247_0 ER -
%0 Journal Article %A Brendle, Simon %T Constant mean curvature surfaces in warped product manifolds %J Publications Mathématiques de l'IHÉS %D 2013 %P 247-269 %V 117 %I Springer-Verlag %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/ %R 10.1007/s10240-012-0047-5 %G en %F PMIHES_2013__117__247_0
Brendle, Simon. Constant mean curvature surfaces in warped product manifolds. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 247-269. doi : 10.1007/s10240-012-0047-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/
Cité par Sources :