Constant mean curvature surfaces in warped product manifolds
Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 247-269.

Voir la notice de l'article dans Numdam

We consider surfaces with constant mean curvature in certain warped product manifolds. We show that any such surface is umbilic, provided that the warping factor satisfies certain structure conditions. This theorem can be viewed as a generalization of the classical Alexandrov theorem in Euclidean space. In particular, our results apply to the deSitter-Schwarzschild and Reissner-Nordstrom manifolds.

DOI : 10.1007/s10240-012-0047-5

Brendle, Simon 1

1 Department of Mathematics, Stanford University Stanford, CA, 94305 USA
@article{PMIHES_2013__117__247_0,
     author = {Brendle, Simon},
     title = {Constant mean curvature surfaces in warped product manifolds},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {247--269},
     publisher = {Springer-Verlag},
     volume = {117},
     year = {2013},
     doi = {10.1007/s10240-012-0047-5},
     zbl = {1273.53052},
     mrnumber = {3090261},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/}
}
TY  - JOUR
AU  - Brendle, Simon
TI  - Constant mean curvature surfaces in warped product manifolds
JO  - Publications Mathématiques de l'IHÉS
PY  - 2013
SP  - 247
EP  - 269
VL  - 117
PB  - Springer-Verlag
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/
DO  - 10.1007/s10240-012-0047-5
LA  - en
ID  - PMIHES_2013__117__247_0
ER  - 
%0 Journal Article
%A Brendle, Simon
%T Constant mean curvature surfaces in warped product manifolds
%J Publications Mathématiques de l'IHÉS
%D 2013
%P 247-269
%V 117
%I Springer-Verlag
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/
%R 10.1007/s10240-012-0047-5
%G en
%F PMIHES_2013__117__247_0
Brendle, Simon. Constant mean curvature surfaces in warped product manifolds. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 247-269. doi : 10.1007/s10240-012-0047-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0047-5/

Cité par Sources :