Voir la notice de l'article dans Numdam
We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and convergence as k→∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect to a measure of finite pluricomplex energy.
Berman, Robert J. 1 ; Boucksom, Sébastien 2 ; Guedj, Vincent 3 ; Zeriahi, Ahmed 4
@article{PMIHES_2013__117__179_0, author = {Berman, Robert J. and Boucksom, S\'ebastien and Guedj, Vincent and Zeriahi, Ahmed}, title = {A variational approach to complex {Monge-Amp\`ere} equations}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {179--245}, publisher = {Springer-Verlag}, volume = {117}, year = {2013}, doi = {10.1007/s10240-012-0046-6}, zbl = {1277.32049}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0046-6/} }
TY - JOUR AU - Berman, Robert J. AU - Boucksom, Sébastien AU - Guedj, Vincent AU - Zeriahi, Ahmed TI - A variational approach to complex Monge-Ampère equations JO - Publications Mathématiques de l'IHÉS PY - 2013 SP - 179 EP - 245 VL - 117 PB - Springer-Verlag UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0046-6/ DO - 10.1007/s10240-012-0046-6 LA - en ID - PMIHES_2013__117__179_0 ER -
%0 Journal Article %A Berman, Robert J. %A Boucksom, Sébastien %A Guedj, Vincent %A Zeriahi, Ahmed %T A variational approach to complex Monge-Ampère equations %J Publications Mathématiques de l'IHÉS %D 2013 %P 179-245 %V 117 %I Springer-Verlag %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0046-6/ %R 10.1007/s10240-012-0046-6 %G en %F PMIHES_2013__117__179_0
Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed. A variational approach to complex Monge-Ampère equations. Publications Mathématiques de l'IHÉS, Tome 117 (2013), pp. 179-245. doi : 10.1007/s10240-012-0046-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10240-012-0046-6/
Cité par Sources :